Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133280, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141312

RESUMO

Due to global pollution derived from plastic waste, the research on microplastics is of increasing public interest. Until now, most studies addressing the effect of microplastic particles on vertebrate cells have primarily utilized polystyrene particles (PS). Other studies on polymer microparticles made, e.g., of polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), or poly (ethylene terephthalate) (PET), cannot easily be directly compared to these PS studies, since the used microparticles differ widely in size and surface features. Here, effects caused by pristine microparticles of a narrow size range between 1 - 4 µm from selected conventional polymers including PS, PE, and PVC, were compared to those of particles made of polymers derived from biological sources like polylactic acid (PLA), and cellulose acetate (CA). The microparticles were used to investigate cellular uptake and assess cytotoxic effects on murine macrophages and epithelial cells. Despite differences in the particles' properties (e.g. ζ-potential and surface morphology), macrophages were able to ingest all tested particles, whereas epithelial cells ingested only the PS-based particles, which had a strong negative ζ-potential. Most importantly, none of the used model polymer particles exhibited significant short-time cytotoxicity, although the general effect of environmentally relevant microplastic particles on organisms requires further investigation.


Assuntos
Polímeros , Poluentes Químicos da Água , Animais , Camundongos , Microplásticos , Plásticos , Poliestirenos , Polietileno/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
J Biol Chem ; 300(1): 105581, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141765

RESUMO

Metastasis still accounts for 90% of all cancer-related death cases. An increase of cellular mobility and invasive traits of cancer cells mark two crucial prerequisites of metastasis. Recent studies highlight the involvement of the endolysosomal cation channel TRPML1 in cell migration. Our results identified a widely antimigratory effect upon loss of TRPML1 function in a panel of cell lines in vitro and reduced dissemination in vivo. As mode-of-action, we established TRPML1 as a crucial regulator of cytosolic calcium levels, actin polymerization, and intracellular trafficking of two promigratory proteins: E-cadherin and ß1-integrin. Interestingly, KO of TRPML1 differentially interferes with the recycling process of E-cadherin and ß1-integrin in a cell line-dependant manner, while resulting in the same phenotype of decreased migratory and adhesive capacities in vitro. Additionally, we observed a coherence between reduction of E-cadherin levels at membrane site and phosphorylation of NF-κB in a ß-catenin/p38-mediated manner. As a result, an E-cadherin/NF-κB feedback loop is generated, regulating E-cadherin expression on a transcriptional level. Consequently, our findings highlight the role of TRPML1 as a regulator in migratory processes and suggest the ion channel as a suitable target for the inhibition of migration and invasion.


Assuntos
Caderinas , Movimento Celular , Integrina beta1 , Neoplasias , Canais de Potencial de Receptor Transitório , Caderinas/metabolismo , Linhagem Celular Tumoral , Integrina beta1/metabolismo , Neoplasias/metabolismo , NF-kappa B , Humanos , Lisossomos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Camundongos , Cálcio/metabolismo , Transporte Proteico
3.
Mol Cell ; 83(23): 4290-4303.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37951216

RESUMO

Reactive aldehydes are abundant endogenous metabolites that challenge homeostasis by crosslinking cellular macromolecules. Aldehyde-induced DNA damage requires repair to prevent cancer and premature aging, but it is unknown whether cells also possess mechanisms that resolve aldehyde-induced RNA lesions. Here, we establish photoactivatable ribonucleoside-enhanced crosslinking (PAR-CL) as a model system to study RNA crosslinking damage in the absence of confounding DNA damage in human cells. We find that such RNA damage causes translation stress by stalling elongating ribosomes, which leads to collisions with trailing ribosomes and activation of multiple stress response pathways. Moreover, we discovered a translation-coupled quality control mechanism that resolves covalent RNA-protein crosslinks. Collisions between translating ribosomes and crosslinked mRNA-binding proteins trigger their modification with atypical K6- and K48-linked ubiquitin chains. Ubiquitylation requires the E3 ligase RNF14 and leads to proteasomal degradation of the protein adduct. Our findings identify RNA lesion-induced translational stress as a central component of crosslinking damage.


Assuntos
RNA , Ubiquitina , Humanos , RNA/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Ribossomos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Aldeídos , Biossíntese de Proteínas
4.
Reproduction ; 166(3): 221-234, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37432973

RESUMO

In brief: Nicotinic acetylcholine receptor alpha 7 (nAChRa7), encoded by Chrna7, is expressed by various murine ovarian cells. Morphological and molecular investigations, including a proteomic study of adult Chrna7 knockout (KO) mouse ovaries, reveal the roles of these receptors in the local regulation of the ovary. Abstract: Nicotinic acetylcholine receptor alpha 7 (nAChRa7), encoded by Chrna7, is involved in cellular functions ranging from synaptic transmission in neurons to regulation of inflammation, cell growth and metabolism to cell death in other cells. Our qPCR results and other studies indicated that nAChRa7 is expressed in the adult mouse ovary, while in situ hybridization and single-cell sequencing data suggested this expression may be shared by several ovarian cells, including fibroblast-like and steroidogenic stroma cells, macrophages and oocytes of small follicles. To explore a possible involvement of nAChRa7 in ovarian functions, we evaluated ovarian morphology of Chrna7-null mutant adult mice (KO) and wildtype mice (WT; 3 months, metestrus) by performing immunohistochemistry, qPCR studies, measurements of serum progesterone and proteomic analyses. The evaluation of serial sections indicated fewer primordial follicles but similar numbers of primary, secondary and tertiary follicles, as well as corpora lutea in KO and WT mice. Atresia was unchanged. Serum progesterone and mRNA levels of proliferation and most apoptosis markers were not changed, yet two typical macrophage markers were elevated. Furthermore, the proteomes of KO ovaries were significantly altered with 96 proteins increased and 32 decreased in abundance in KOs compared to WTs. Among the elevated proteins were markers for stroma cells. Hence, the lack of nAChRa7 causes changes in small follicle counts and alterations of the ovarian stroma cells. The ovarian phenotype of Chrna7 mutant mice links this channel protein to the local regulation of ovarian cells, including stroma cells.


Assuntos
Ovário , Receptores Nicotínicos , Animais , Feminino , Camundongos , Camundongos Knockout , Ovário/metabolismo , Fenótipo , Progesterona/metabolismo , Proteômica , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
5.
J Neuroendocrinol ; : e13277, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37160285

RESUMO

Growth hormone receptor deficiency (GHRD) results in low serum insulin-like growth factor 1 (IGF1) and high, but non-functional serum growth hormone (GH) levels in human Laron syndrome (LS) patients and animal models. This study investigated the quantitative histomorphological and molecular alterations associated with GHRD. Pituitary glands from 6 months old growth hormone receptor deficient (GHR-KO) and control pigs were analyzed using a quantitative histomorphological approach in paraffin (9 GHR-KO [5 males, 4 females] vs. 11 controls [5 males, 6 females]), ultrathin sections tissue sections (3 male GHR-KO vs. 3 male controls) and label-free proteomics (4 GHR-KO vs. 4 control pigs [2 per sex]). GHR-KO pigs displayed reduced body weights (60% reduction in comparison to controls; p < .0001) and decreased pituitary volumes (54% reduction in comparison to controls; p < .0001). The volume proportion of the adenohypophysis did not differ in GHR-KO and control pituitaries (65% vs. 71%; p = .0506) and GHR-KO adenohypophyses displayed a reduced absolute volume but an unaltered volume density of somatotrophs in comparison to controls (21% vs. 18%; p = .3164). In GHR-KO pigs, somatotroph cells displayed a significantly reduced volume density of granules (23.5%) as compared to controls (67.7%; p < .0001). Holistic proteome analysis of adenohypophysis samples identified 4660 proteins, of which 592 were differentially abundant between the GHR-KO and control groups. In GHR-KO samples, the abundance of somatotropin precursor was decreased, whereas increased abundances of proteins involved in protein production, transport and endoplasmic reticulum (ER) stress were revealed. Increased protein production and secretion as well as significantly reduced proportion of GH-storing granules in somatotroph cells of the adenohypophysis without an increase in volume density of somatotroph cells in the adenohypophysis could explain elevated serum GH levels in GHR-KO pigs.

6.
Cancers (Basel) ; 14(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428646

RESUMO

Acquired drug resistance constitutes a serious obstacle to the successful therapy of cancer. In the process of therapy resistance, microRNAs can play important roles. In order to combat resistance formation and to improve the efficacy of chemotherapeutics, the mechanisms of the multifaceted hsa-miR-200c on drug resistance were elucidated. Upon knockout of hsa-miR-200c in breast carcinoma cells, a proteomic approach identified altered expression of glutathione S-transferases (GSTs) when cells were treated with the chemotherapeutic drug doxorubicin. In different hsa-miR-200c expression systems, such as knockout, inducible sponge and inducible overexpression, the differential expression of all members of the GST family was evaluated. Expression of hsa-miR-200c in cancer cells led to the repression of a multitude of these GSTs and as consequence, enhanced drug-induced tumor cell death which was evaluated for two chemotherapeutic drugs. Additionally, the influence of hsa-miR-200c on the glutathione pathway, which is part of the phase II detoxification mechanism, was investigated. Finally, the long-term effects of hsa-miR-200c on drug efficacy were studied in vitro and in vivo. Upon doxycycline induction of hsa-miR-200c, MDA-MB 231 xenograft mouse models revealed a strongly reduced tumor growth and an enhanced treatment response to doxorubicin. A combined treatment of these tumors with hsa-miR-200c and doxorubicin resulted in complete regression of the tumor in 60% of the animals. These results identify hsa-miR-200c as an important player regulating the cellular phase II detoxification, thus sensitizing cancer cells not expressing this microRNA to chemotherapeutics and reversing drug resistance through suppression of GSTs.

7.
Cells ; 11(19)2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36231125

RESUMO

The functions of human testicular peritubular cells (HTPCs), forming a small compartment located between the seminiferous epithelium and the interstitial areas of the testis, are not fully known but go beyond intratesticular sperm transport and include immunological roles. The expression of the glucocorticoid receptor (GR) indicates that they may be regulated by glucocorticoids (GCs). Herein, we studied the consequences of the GC dexamethasone (Dex) in cultured HTPCs, which serves as a unique window into the human testis. We examined changes in cytokines, mainly by qPCR and ELISA. A holistic mass-spectrometry-based proteome analysis of cellular and secreted proteins was also performed. Dex, used in a therapeutic concentration, decreased the transcript level of proinflammatory cytokines, e.g., IL6, IL8 and MCP1. An siRNA-mediated knockdown of GR reduced the actions on IL6. Changes in IL6 were confirmed by ELISA measurements. Of note, Dex also lowered GR levels. The proteomic results revealed strong responses after 24 h (31 significantly altered cellular proteins) and more pronounced ones after 72 h of Dex exposure (30 less abundant and 42 more abundant cellular proteins). Dex also altered the composition of the secretome (33 proteins decreased, 13 increased) after 72 h. Among the regulated proteins were extracellular matrix (ECM) and basement membrane components (e.g., FBLN2, COL1A2 and COL3A1), as well as PTX3 and StAR. These results pinpoint novel, profound effects of Dex in HTPCs. If transferrable to the human testis, changes specifically in ECM and the immunological state of the testis may occur in men upon treatment with Dex for medical reasons.


Assuntos
Túbulos Seminíferos , Testículo , Dexametasona/farmacologia , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Proteoma/metabolismo , Proteômica , RNA Interferente Pequeno/metabolismo , Receptores de Glucocorticoides/metabolismo , Sêmen/metabolismo , Túbulos Seminíferos/metabolismo , Testículo/metabolismo
8.
ACS Appl Mater Interfaces ; 14(41): 47277-47287, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194482

RESUMO

Microplastic particles are pollutants in the environment with a potential impact on ecology and human health. As soon as microplastic particles get in contact with complex (biological) environments, they will be covered by an eco- and/or protein corona. In this contribution, protein corona formation was conducted under defined laboratory conditions on polystyrene (PS) microparticles to investigate the influence on surface properties, protein corona evolution, particle-cell interactions, and uptake in two murine epithelial cells. To direct protein corona formation, PS particles were preincubated with five model proteins, namely, bovine serum albumin (BSA), myoglobin, ß-lactoglobulin, lysozyme, and fibrinogen. Subsequently, the single-protein-coated particles were incubated in a cell culture medium containing a cocktail of serum proteins to analyze changes in the protein corona profile as well as in the binding kinetics of the model proteins. Therein, we could show that the precoating step has a critical impact on the final composition of the protein corona. Yet, since proteins building the primary corona were still detectable after additional incubations in a protein-containing medium, backtracking of the particle's history is possible. Interestingly, whereas the precoating history significantly disturbs particle-cell interactions (PCIs), the cellular response (i.e., metabolic activity, MTT assay) stays unaffected. Of note, lysozyme precoating revealed one of the highest rates in PCI for both epithelial cell lines. Taken together, we could show that particle history has a significant impact on protein corona formation and subsequently on the interaction of particles with murine intestinal epithelial-like cells. However, as this study was limited to one cell type, further work is needed to assess if these observations can be generalized to other cell types.


Assuntos
Poluentes Ambientais , Nanopartículas , Intervenção Coronária Percutânea , Coroa de Proteína , Humanos , Camundongos , Animais , Coroa de Proteína/química , Poliestirenos/química , Soroalbumina Bovina/química , Muramidase , Microplásticos , Tamanho da Partícula , Plásticos , Mioglobina , Fibrinogênio , Células Epiteliais , Lactoglobulinas , Nanopartículas/química
9.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291816

RESUMO

BACKGROUND: As microRNA-142 (miR-142) is the only human microRNA gene where mutations have consistently been found in about 20% of all cases of diffuse large B-cell lymphoma (DLBCL), we wanted to determine the impact of miR-142 inactivation on protein expression of DLBCL cell lines. METHODS: miR-142 was deleted by CRISPR/Cas9 knockout in cell lines from DLBCL. RESULTS: By proteome analyses, miR-142 knockout resulted in a consistent up-regulation of 52 but also down-regulation of 41 proteins in GC-DLBCL lines BJAB and SUDHL4. Various mitochondrial ribosomal proteins were up-regulated in line with their pro-tumorigenic properties, while proteins necessary for MHC-I presentation were down-regulated in accordance with the finding that miR-142 knockout mice have a defective immune response. CFL2, CLIC4, STAU1, and TWF1 are known targets of miR-142, and we could additionally confirm AKT1S1, CCNB1, LIMA1, and TFRC as new targets of miR-142-3p or -5p. CONCLUSIONS: Seed-sequence mutants of miR-142 confirmed potential targets and novel targets of miRNAs can be identified in miRNA knockout cell lines. Due to the complex contribution of miRNAs within cellular regulatory networks, in particular when miRNAs highly present in RISC complexes are replaced by other miRNAs, primary effects on gene expression may be covered by secondary layers of regulation.

10.
Sci Rep ; 12(1): 15616, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114358

RESUMO

In contrast to other domestic mammals, the embryo-derived signal(s) leading to maternal recognition of pregnancy (MRP) are still unknow in the mare. We hypothesize that these embryonic signals could be packed into uterine extracellular vesicles (uEVs), acting as multi-signal messengers between the conceptus and the maternal tract, and contributing to MRP. To unveil these signals, the RNA and protein cargos of uEVs isolated from uterine lavages collected from pregnant mares (P; day 10, 11, 12 and 13 after ovulation) and cyclic control mares (C; day 10 and 13 after ovulation) were analyzed. Our results showed a fine-tuned regulation of the uEV cargo (RNAs and proteins), by the day of pregnancy, the estrous cycle, and even the size of the embryo. A particular RNA pattern was identified with specific increase on P12 related to immune system and hormonal response. Besides, a set of proteins as well as RNAs was highly enriched in EVs on P12 and P13. Differential abundance of miRNAs was also identified in P13-derived uEVs. Their target genes were linked to down- or upregulated genes in the embryo and the endometrium, exposing their potential origin. Our study identified for first time specific molecules packed in uEVs, which were previously associated to MRP in the mare, and thus bringing added value to the current knowledge. Further integrative and functional analyses will help to confirm the role of these molecules in uEVs during MRP in the mare.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Embrião de Mamíferos/metabolismo , Endométrio/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Cavalos , Mamíferos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , Proteínas/metabolismo , Útero/metabolismo
11.
Nature ; 609(7927): 590-596, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002575

RESUMO

Bacterial cell wall components provide various unique molecular structures that are detected by pattern recognition receptors (PRRs) of the innate immune system as non-self. Most bacterial species form a cell wall that consists of peptidoglycan (PGN), a polymeric structure comprising alternating amino sugars that form strands cross-linked by short peptides. Muramyl dipeptide (MDP) has been well documented as a minimal immunogenic component of peptidoglycan1-3. MDP is sensed by the cytosolic nucleotide-binding oligomerization domain-containing protein 24 (NOD2). Upon engagement, it triggers pro-inflammatory gene expression, and this functionality is of critical importance in maintaining a healthy intestinal barrier function5. Here, using a forward genetic screen to identify factors required for MDP detection, we identified N-acetylglucosamine kinase (NAGK) as being essential for the immunostimulatory activity of MDP. NAGK is broadly expressed in immune cells and has previously been described to contribute to the hexosamine biosynthetic salvage pathway6. Mechanistically, NAGK functions upstream of NOD2 by directly phosphorylating the N-acetylmuramic acid moiety of MDP at the hydroxyl group of its C6 position, yielding 6-O-phospho-MDP. NAGK-phosphorylated MDP-but not unmodified MDP-constitutes an agonist for NOD2. Macrophages from mice deficient in NAGK are completely deficient in MDP sensing. These results reveal a link between amino sugar metabolism and innate immunity to bacterial cell walls.


Assuntos
Acetilmuramil-Alanil-Isoglutamina , Proteína Adaptadora de Sinalização NOD2 , Fosfotransferases (Aceptor do Grupo Álcool) , Acetilmuramil-Alanil-Isoglutamina/química , Acetilmuramil-Alanil-Isoglutamina/imunologia , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Animais , Bactérias/química , Bactérias/imunologia , Parede Celular/química , Hexosaminas/biossíntese , Imunidade Inata , Macrófagos/enzimologia , Macrófagos/imunologia , Camundongos , Proteína Adaptadora de Sinalização NOD2/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/química , Peptidoglicano/imunologia , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
12.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35274126

RESUMO

Liver cancers, including hepatocellular carcinoma (HCC), are the second leading cause of cancer death worldwide, and novel therapeutic strategies are still highly needed. Recently, the endolysosomal cation channel TRPML1 (also known as MCOLN1) has gained focus in cancer research because it represents an interesting novel target. We utilized the recently developed isoform-selective TRPML1 activator ML1-SA1 and the CRISPR/Cas9 system to generate tools for overactivation and loss-of-function studies on TRPML1 in HCC. After verification of our tools, we investigated the role of TRPML1 in HCC by studying proliferation, apoptosis and proteomic alterations. Furthermore, we analyzed mitochondrial function in detail by performing confocal and transmission electron microscopy combined with SeahorseTM and Oroboros® functional analysis. We report that TRPML1 overactivation mediated by a novel, isoform-selective small-molecule activator induces apoptosis by impairing mitochondrial function in a Ca2+-dependent manner. Additionally, TRPML1 loss-of-function deregulates mitochondrial renewal, which leads to proliferation impairment. Thus, our study reveals a novel role for TRPML1 as regulator of mitochondrial function and its modulators as promising molecules for novel therapeutic options in HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Canais de Potencial de Receptor Transitório , Cálcio/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Proteômica , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
13.
Mol Oncol ; 15(8): 2140-2155, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33786987

RESUMO

The incidence of melanoma and nonmelanoma skin cancer has increased tremendously in recent years. Although novel treatment options have significantly improved patient outcomes, the prognosis for most patients with an advanced disease remains dismal. It is, thus, imperative to understand the molecular mechanisms involved in skin carcinogenesis in order to develop new targeted treatment strategies. Receptor tyrosine kinases (RTK) like the ERBB receptor family, including EGFR/ERBB1, ERBB2/NEU, ERBB3, and ERBB4, are important regulators of skin homeostasis and their dysregulation often results in cancer, which makes them attractive therapeutic targets. Members of the leucine-rich repeats and immunoglobulin-like domains protein family (LRIG1-3) are ERBB regulators and thus potential therapeutic targets to manipulate ERBB receptors. Here, we analyzed the function of LRIG1 during chemically induced skin carcinogenesis in transgenic mice expressing LRIG1 in the skin under the control of the keratin 5 promoter (LRIG1-TG mice). We observed a significant induction of melanocytic tumor formation in LRIG1-TG mice and no difference in papilloma incidence between LRIG1-TG and control mice. Our findings also revealed that LRIG1 affects ERBB signaling via decreased phosphorylation of EGFR and increased activation of the oncoprotein ERBB2 during skin carcinogenesis. The epidermal proliferation rate was significantly decreased during epidermal tumorigenesis under LRIG1 overexpression, and the apoptosis marker cleaved caspase 3 was significantly activated in the epidermis of transgenic LRIG1 mice. Additionally, we detected LRIG1 expression in human cutaneous squamous cell carcinoma and melanoma samples. Therefore, we depleted LRIG1 in human melanoma cells (A375) by CRISPR/Cas9 technology and found that this caused EGFR and ERBB3 downregulation in A375 LRIG1 knockout cells 6 h following stimulation with EGF. In conclusion, our study demonstrated that LRIG1-TG mice develop melanocytic skin tumors during chemical skin carcinogenesis and a deletion of LRIG1 in human melanoma cells reduces EGFR and ERBB3 expression after EGF stimulation.


Assuntos
Melanoma/patologia , Glicoproteínas de Membrana/fisiologia , Neoplasias Cutâneas/patologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Melanoma/induzido quimicamente , Melanoma/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Receptores Proteína Tirosina Quinases/metabolismo , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/enzimologia
14.
Cells ; 9(12)2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266100

RESUMO

Filamins are large dimeric F-actin cross-linking proteins, crucial for the mechanosensitive properties of a number of cell types. Due to their interaction with a variety of different proteins, they exert important regulatory functions. However, in the human testis the role of filamins has been insufficiently explored. Immunohistochemical staining of human testis samples identified filamin A (FLNA) in spermatogonia and peritubular myoid cells. Investigation of different testicular tumor samples indicated that seminoma also express FLNA. Moreover, mass spectrometric analyses identified FLNA as one of the most abundant proteins in human seminoma TCam-2 cells. We therefore focused on FLNA in TCam-2 cells, and identified by co-immunoprecipitation LAD1, RUVBL1 and DAZAP1, in addition to several cytoskeletal proteins, as interactors of FLNA. To study the role of FLNA in TCam-2 cells, we generated FLNA-deficient cells using the CRISPR/Cas9 system. Loss of FLNA causes an irregular arrangement of the actin cytoskeleton and mechanical instability, impaired adhesive properties and disturbed migratory behavior. Furthermore, transcriptional activity of typical stem cell factors is increased in the absence of FLNA. In summary, our data suggest that FLNA is crucially involved in balancing stem cell characteristics and invasive properties in human seminoma cells and possibly human testicular germ cells.


Assuntos
Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Filaminas/metabolismo , Seminoma/metabolismo , Células-Tronco/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adulto , Idoso , Autoantígenos/metabolismo , Sistemas CRISPR-Cas/fisiologia , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Colágenos não Fibrilares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias Testiculares/metabolismo , Testículo/metabolismo , Transcrição Gênica/fisiologia , Colágeno Tipo XVII
15.
Science ; 369(6508): 1249-1255, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32680882

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. A major virulence factor of SARS-CoVs is the nonstructural protein 1 (Nsp1), which suppresses host gene expression by ribosome association. Here, we show that Nsp1 from SARS-CoV-2 binds to the 40S ribosomal subunit, resulting in shutdown of messenger RNA (mRNA) translation both in vitro and in cells. Structural analysis by cryo-electron microscopy of in vitro-reconstituted Nsp1-40S and various native Nsp1-40S and -80S complexes revealed that the Nsp1 C terminus binds to and obstructs the mRNA entry tunnel. Thereby, Nsp1 effectively blocks retinoic acid-inducible gene I-dependent innate immune responses that would otherwise facilitate clearance of the infection. Thus, the structural characterization of the inhibitory mechanism of Nsp1 may aid structure-based drug design against SARS-CoV-2.


Assuntos
Betacoronavirus/química , Evasão da Resposta Imune , Imunidade Inata , Biossíntese de Proteínas , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/imunologia , Betacoronavirus/metabolismo , Betacoronavirus/fisiologia , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Microscopia Crioeletrônica , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Modelos Moleculares , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA Mensageiro/metabolismo , Receptores Imunológicos , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , SARS-CoV-2
16.
FASEB J ; 34(9): 11860-11882, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652772

RESUMO

Sorafenib represents the current standard of care for patients with advanced-stage hepatocellular carcinoma (HCC). However, acquired drug resistance occurs frequently during therapy and is accompanied by rapid tumor regrowth after sorafenib therapy termination. To identify the mechanism of this therapy-limiting growth resumption, we established robust sorafenib resistance HCC cell models that exhibited mitochondrial dysfunction and chemotherapeutic crossresistance. We found a rapid relapse of tumor cell proliferation after sorafenib withdrawal, which was caused by renewal of mitochondrial structures alongside a metabolic switch toward high electron transport system (ETS) activity. The translation-inhibiting antibiotic tigecycline impaired the biogenesis of mitochondrial DNA-encoded ETS subunits and limited the electron acceptor turnover required for glutamine oxidation. Thereby, tigecycline prevented the tumor relapse in vitro and in murine xenografts in vivo. These results offer a promising second-line therapeutic approach for advanced-stage HCC patients with progressive disease undergoing sorafenib therapy or treatment interruption due to severe adverse events.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/farmacologia , Tigeciclina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Recidiva Local de Neoplasia/prevenção & controle , Inibidores da Síntese de Proteínas/farmacologia
17.
Reproduction ; 160(2): 259-268, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32449695

RESUMO

Testicular peritubular cells (TPCs) are smooth muscle-like cells, which form a compartment surrounding the seminiferous tubules. Previous studies employing isolated human testicular peritubular cells (HTPCs) indicated that their roles in the testis go beyond sperm transport and include paracrine and immunological contributions. Peritubular cells from a non-human primate (MKTPCs), the common marmoset monkey, Callithrix jacchus, share a high degree of homology with HTPCs. However, like their human counterparts these cells age in vitro and replicative senescence limits in-depth functional or mechanistic studies. Therefore, a stable cellular model was established. MKTPCs of a young adult animal were immortalized by piggyBac transposition of human telomerase (hTERT), that is, without the expression of viral oncogenes. Immortalized MKTPCs (iMKTPCs) grew without discernable changes for more than 50 passages. An initial characterization revealed typical genes expressed by peritubular cells (androgen receptor (AR), smooth-muscle actin (ACTA2), calponin (CNN1)). A proteome analysis of the primary MKTPCs and the derived immortalized cell line confirmed that the cells almost completely retained their phenotype. To test whether they respond in a similar way as HTPCs, iMKTPCs were challenged with forskolin (FSK) and ATP. As HTPCs, they showed increased expression level of the StAR protein (StAR) after FSK stimulation, indicating steroidogenic capacity. ATP increased the expression of pro-inflammatory factors (e.g. IL1B; CCL7), as it is the case in HTPCs. Finally, we confirmed that iMKTPCs can efficiently be transfected. Therefore, they represent a highly relevant translational model, which allows mechanistic studies for further exploration of the roles of testicular peritubular cells.


Assuntos
Senescência Celular , Modelos Animais , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Túbulos Seminíferos/metabolismo , Testículo/metabolismo , Animais , Callithrix , Masculino , Proteoma/análise , Túbulos Seminíferos/citologia , Testículo/citologia
18.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118717, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32283126

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is the most prominent tumor of non-melanoma skin cancers and the most aggressive tumor among keratinocyte carcinoma of the skin, showing a high potential for local invasion and metastasis. The cSCC incidences increased dramatically in recent years and the disease occurs more commonly than any other malignancy. The secretome of cancer cells is currently the focus of many studies in order to identify new marker proteins for different types of cancer and to investigate its influence on the tumor microenvironment. In our study we evaluated whether the secretome of cSCC cells has an impact on keratinocytes, the surrounding tissue cells of cSCC. Therefore, we analyzed and compared the secretome of human A431 cancer cells and of HaCaT keratinocytes by mass spectrometry. In a second experiment, keratinocytes were exposed to the secretome of A431 cells and vice versa and the transcriptome was analyzed by next-generation sequencing. HaCaT cells incubated with A431 conditioned medium revealed a significantly activated mammalian target of rapamycin pathway with a concomitant increase in proliferation and migration. In conclusion, our data demonstrate the impact of the secretome of cancer cells on the transcription machinery of the cells surrounding the tumor, leading to a tumorigenic cell fate.


Assuntos
Carcinogênese/metabolismo , Carcinoma de Células Escamosas/metabolismo , Queratinócitos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Cutâneas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Apoptose , Carcinoma de Células Escamosas/genética , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/patologia , Proteoma/análise , Transdução de Sinais , Pele/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Microambiente Tumoral
19.
Theriogenology ; 141: 186-196, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557616

RESUMO

Subclinical endometritis (SE) in cattle is defined as clinically unapparent inflammation of the endometrium. It is reported to impair fertility in affected cows and causes economic loss within the dairy industry. A gold standard for diagnosis of SE has not been set. Uterine cytology and histopathology are both applied, but low agreement between these methods has been described. The objective of the present study was to assess the capability of uterine secretions (US) as a new medium for diagnosis of SE. A novel sampling tool was applied to retrieve US as well as cytological, histological and bacteriological samples of the endometrium after a singular passage through the cervix in 108 dairy cows (43-62 days post-partum [dpp]). To assess the quality of the US samples, a proteome analysis of samples from five healthy donors was performed, demonstrating that in vivo sampling of US was feasible and generated samples suitable for diagnostic purposes. Diagnosis of SE was realized by the combination of clinical, cytological, and histopathological findings. Quantitative analysis of pro- and anti-inflammatory cytokines (interleukin (IL)1B, IL6, IL8, IL17A, IL10) in US was conducted using AlphaLISA-technology. RNAlater-fixed endometrial biopsies were used for gene expression analysis of the cytokines IL1B, IL6, IL8, IL10 and tumor necrosis factor alpha (TNFα) as well as the prostaglandin-endoperoxide synthase 2 (PTGS2) and the antimicrobial peptide S100A9 by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Cows were assigned to groups according to their uterine health status. A large group of animals (n = 83) displayed no signs of endometritis (E.NEG). Cytological and histopathological examination revealed low agreement; hence, animals with SE were differentiated into SE(cyto) and SE(histo) groups (n = 7 and n = 13, respectively). One animal in group SE(cyto + histo) as well as four animals with signs of clinical endometritis (CE) were excluded from further analysis. SE(cyto) showed significantly higher median concentrations of IL1B, IL8 and IL17A in US as well as a significantly higher median expression of IL1B, IL8 and IL10 in endometrial biopsies compared to E.NEG. No significant differences were found for IL6 and IL10 in US and IL6, TNFα, PTGS2 and S100A9 in endometrial tissue between these groups. SE(histo) presented no differences concerning the analyzed parameters compared to E.NEG. In conclusion, a method to sample US was successfully established in dairy cows. The cytokines IL1B, IL8 and IL17A are promising candidates in diagnosing cytological endometritis by US. Further assessment of US might contribute to a better understanding of the pathological mechanisms leading to chronic endometrial inflammation and to impaired fertility in affected cows.


Assuntos
Doenças dos Bovinos/diagnóstico , Citocinas/metabolismo , Endometrite/veterinária , Útero/metabolismo , Animais , Biomarcadores , Bovinos , Doenças dos Bovinos/patologia , Citocinas/química , Endometrite/diagnóstico , Endometrite/patologia , Feminino , Regulação da Expressão Gênica , Útero/patologia
20.
Biol Reprod ; 102(3): 730-739, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31786596

RESUMO

Over the last decades, fertility of dairy cows has declined due to selection strategies focusing on milk yield. To study the effect of genetic merit for fertility on the proteome of the bovine uterine luminal fluid, Holstein heifers with low- and two groups of heifers with high-fertility index (high-fertility Holstein and Montbéliarde) were investigated. To focus on the maternal effect, heifers from all groups were synchronized and received on Day 7 high-quality embryos. Uterine luminal fluid from Day 19 pregnant heifers was analyzed in a holistic proteomic approach using nano-LC-MS/MS analysis combined with a label-free quantification approach. In total, 1737 proteins were identified, of which 597 differed significantly in abundance between the three groups. The vast majority of proteome differences was found comparing both high-fertility groups to the low-fertility Holstein group, showing that the genetic predisposition for fertility is prevalent regarding the uterine luminal fluid proteome. Evaluation of this dataset using bioinformatic tools revealed an assignment of higher abundant proteins in low-fertility Holstein to several metabolic processes, such as vitamin metabolic process, which comprises folate receptor alpha (FOLR1) and retinol-binding protein, indicating an involvement of disturbed metabolic processes in decreased fertility. Moreover, immune system-related proteins - lactotransferrin and chromogranin A - were enriched in low-fertility cows together with interferon tau 3 h and interferon tau-2. Our results indicate that the genetic merit for fertility leads to substantial quantitative differences at the level of proteins in uterine fluid of pregnant animals, thus altering the microenvironment for the early conceptus.


Assuntos
Fertilidade/fisiologia , Proteoma/metabolismo , Útero/metabolismo , Animais , Bovinos , Cromogranina A/metabolismo , Biologia Computacional , Feminino , Receptor 1 de Folato/metabolismo , Lactoferrina/metabolismo , Proteômica , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA